中国组织工程研究 ›› 2013, Vol. 17 ›› Issue (16): 2927-2934.doi: 10.3969/j.issn.2095-4344.2013.16.011

• 材料生物相容性 material biocompatibility • 上一篇    下一篇

不同浓度透明质酸水凝胶的细胞相容性

李  凯1,吕少一2,周建业1,商青青1,邵自强2,胡盛寿1   

  1. 1 北京协和医学院,中国医学科学院,国家心血管病中心,阜外心血管病医院&心血管疾病国家重点实验室,北京市  100037
    2 北京理工大学材料科学与工程学院,北京市  100081
  • 收稿日期:2013-02-19 修回日期:2013-03-14 出版日期:2013-04-16 发布日期:2013-04-16
  • 通讯作者: 周建业,硕士,研究员,北京协和医学院,中国医学科学院,国家心血管病中心,阜外心血管病医院&心血管疾病国家重点实验室,北京市 100037 zhoujy@263.net

Cytocompatibility of hyaluronic acid hydrogels with concentration variations

Li Kai1, Lü Shao-yi2, Zhou Jian-ye1, Shang Qing-qing1, Shao Zi-qiang2, Hu Sheng-shou1   

  1. 1 State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing  100037, China
    2 Department of Material Science and Engineering, Beijing Institute of Technology, Beijing  100081, China
     
  • Received:2013-02-19 Revised:2013-03-14 Online:2013-04-16 Published:2013-04-16
  • Contact: Zhou Jian-ye, Master, Investigator, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100037, China zhoujy@263.net

摘要:

背景:水凝胶呈半凝固的胶体状态,可以实现细胞的三维立体培养,消除普通培养皿中出现的“接触抑制”现象,从而提高培养效率,透明质酸水凝胶作为三维培养基质在干细胞和组织工程研究领域的应用已有报道。
目的:探讨透明质酸水凝胶浓度的改变对其基本性能以及对大鼠骨髓间充质干细胞三维培养形态和增殖的影响。
方法:制备4,8,12 g/L的透明质酸水凝胶,观察其凝胶时间、溶胀率、降解速率以及黏弹性;用这3种浓度透明质酸水凝胶包封骨髓间充质干细胞进行三维培养,并以普通培养皿的二维培养作对照。通过激光扫描共焦显微镜观察不同培养条件下骨髓间充质干细胞的形态,采用细胞计数法描绘骨髓间充质干细胞在不同浓度透明质酸水凝胶内的生长曲线。
结果与结论:对于4-12 g/L的透明质酸水凝胶,其浓度越大,凝胶时间越短,溶胀率越低,降解速率越慢,水凝胶弹性强度越大(P < 0.05)。激光扫描共焦显微镜见骨髓间充质干细胞在透明质酸水凝胶内呈立体圆球形,与二维培养时呈现的梭形明显不同;同时,细胞计数结果显示骨髓间充质干细胞在透明质酸水凝胶内的增殖率高于二维培养,并以8 g/L透明质酸水凝胶的促增殖作用最明显(P < 0.05)。可见不同浓度的透明质酸水凝胶性能存在差异,对大鼠骨髓间充质干细胞的生长、增殖也有影响,8 g/L的透明质酸水凝胶更适合大鼠骨髓间充质干细胞的三维培养。

 

关键词: 生物材料, 材料生物相容性, 组织工程, 透明质酸水凝胶, 机械性能, 骨髓间充质干细胞, 三维培养, 增殖, 性能

Abstract:

BACKGROUND: Hydrogel, which is a kind of semi-solid materials, can be used for three-dimensional culture for mesenchymal stem cells. So it would improve efficiency of cultured cells by eliminating “contact inhibition”, which is common in two-dimensional culture. Hyaluronic acid hydrogel as a three-dimensional culture matrix has been reported in the field of stem cells and tissue engineering research.
OBJECTIVE: To investigate the morphology and proliferation of rat bone marrow mesenchymal stem cells cultured in the three-dimensional hyaluronic acid hydrogels with different properties.
METHODS: Three concentrations of hyaluronic acid hydrogels, 4, 8, and 12 g/L, were prepared and evaluated with their properties including gelation time, swelling ratio, degradation rate and viscoelasticity. Rat bone marrow mesenchymal stem cells were encapsulated and cultured in those hyaluronic acid hydrogels. Another rat bone marrow mesenchymal stem cells cultured in the two-dimensional medium served as control. Morphology of the encapsulated bone marrow mesenchymal stem cells was observed by laser scanning confocal microscope. Growth curves of bone marrow mesenchymal stem cells cultured in the hyaluronic acid hydrogels with different concentrations were depicted using cell counting method.
RESULTS AND CONCLUSION: The higher concentration of hyaluronic acid hydrogels leaded to the shorter gelation time, lower swelling ratio, slower degradation rate and higher strength (P < 0.05). Bone marrow mesenchymal stem cells cultured in the three-dimensional hyaluronic acid hydrogels showed a spherical shape and higher proliferation compared with those in normal culture. Meanwhile, rat bone marrow mesenchymal stem cells cultured in 8 g/L hyaluronic acid hydrogels showed higher proliferation than those in 4 and 12 g/L hyaluronic acid hydrogels (P < 0.05). These findings indicate that concentration variations of hyaluronic acid hydrogels lead to changes in their mechanical properties. Hyaluronic acid hydrogel with a concentration of 8 g/L is more appropriate for three-dimensional culture of rat bone marrow mesenchymal stem cells.

Key words: biomaterials, material biocompatibility, tissue engineering, hyaluronic acid hydrogel, mechanical properties, bone marrow mesenchymal stem cells, three-dimensional culture, proliferation, properties

中图分类号: